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Abstract— This paper addresses the task of designing a mod-
ular neural network architecture that jointly solves different
tasks. As an example we use the tasks of depth estimation and
semantic segmentation given a single RGB image. The main
focus of this work is to analyze the cross-modality influence
between depth and semantic prediction maps on their joint
refinement. While most of the previous works solely focus
on measuring improvements in accuracy, we propose a way
to quantify the cross-modality influence. We show that there
is a relationship between final accuracy and cross-modality
influence, although not a simple linear one. Hence a larger
cross-modality influence does not necessarily translate into
an improved accuracy. We find that a beneficial balance
between the cross-modality influences can be achieved by
network architecture and conjecture that this relationship can
be utilized to understand different network design choices.
Towards this end we propose a Convolutional Neural Network
(CNN) architecture that fuses the state-of-the-art results for
depth estimation and semantic labeling. By balancing the cross-
modality influences between depth and semantic prediction, we
achieve improved results for both tasks using the NYU-Depth
v2 benchmark.

I. INTRODUCTION

Machine perception is an important and recurrent theme

throughout the Robotics and Computer Vision community.

Computer Vision has contributed a broad range of tasks to

the field of perception, such as estimating physical properties

from an image, e.g. depth, motion, or reflectance, as well as

estimating semantic properties, e.g. labeling each pixel with

a semantic class. One may argue that all of these tasks con-

tribute to one central goal, which can be broadly described

as “holistic scene understanding”. In the last decade a lot

of research effort has focused on solving individual tasks as

good as possible. While it is certainly important to gauge the

limits of individual tasks, various researchers have recently

raised the question of whether the next big step forward can

be achieved by focusing on improving single tasks or by

considering different tasks in a joint fashion, e.g. [1].1 This

question is particularly emphasized in robotics setups where

the coordination of multiple tasks and consolidation of vari-

ous predictions is constitutive. In this work we focus on the

question of “How to analyze and exploit the cross-modality
influence between depth and semantic predictions in order to
solve tasks jointly.”. While the idea of a “beneficial influence

between different tasks” is not new, it has in our opinion not
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1See for example the recent workshop on “Recognition meets Recon-
struction”, where one aim is to solve two tasks jointly.

received enough attention. This is in contrast to other fields,

such as neuroscience, psychology and machine learning. In

principle, there are two different ways to consider multiple

tasks in a joint framework. One option is to have one big,

joint model. For example this can be a neural network which

has a single RGB image I as input and outputs a semantic

segmentation S and a depth labeling D; or a graphical

model which represents p(S,D|I). While this is a popular

choice and many impressive results have been achieved,

e.g. [2] (for depth, semantic segmentation and more) or

[3] (for depth, surface reflectance and lighting), it has its

drawbacks. Firstly, the models become rapidly complex and

are hence rarely used in follow-up works. Secondly, it is

very difficult to analyze whether there is indeed a beneficial

influence between different tasks. For instance, as we will see

later, a joint model may have no interdependency between

modalities and tasks and can in fact be considered as two

separate models. The second possible approach for solving

multiple tasks jointly is to follow a modular design. In this

work, we pursue this option. We propose a simple modular

design where individual tasks are first inferred separately

and then fed into our joint refinement network (see Fig. 1).

The aim of this network is to leverage a beneficial cross-

modality influence between the soft (probabilistic) input

modalities in order to jointly refine both task outputs. We

show experimentally that there is indeed a relation between

the cross-modality influence and an improvement in accuracy

for each individual task. However, the relation is not linear,

i.e. a larger cross-modality influence does not necessarily

mean higher accuracy.

While such a modular design is not as rich as a complex

joint model, it brings many advantages: (i) New modalities

can be easily integrated. For instance a module that esti-

mates the reflectance properties can be integrated. (ii) We

can quantify the cross-modality influence between different

modalities, as discussed in detail later. (iii) It is easier to

train all the tasks, in contrast to a full joint model. For

example, in practice we often have many training images

for individual modalities but fewer training images for all

modalities jointly. A joint model would have to be trained

in a semi-supervised fashion in order to cope with such

heterogeneous data, while in a modular architecture each

module is trained with the applicable training data. (iv) Since

in our case each module, i.e. for the individual task and

the joint refinement, is realized in the form of Convolution

Neural Networks (CNNs), it is possible to conduct end-to-

end training.

The advantages of modular architectures are not new and
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Fig. 1. Example processing flow of our joint refinement network. A single RGB image is first processed separately by two state-of-the-art neural
networks for depth estimation and semantic segmentation. The two resulting predictions contain information which can mutually improve each other: (1)
yellow arrow from depth to semantic segmentation means that a smooth depth map does not support an isolated region (cyan means furniture); (2) yellow
arrow from semantic segmentation to depth map means that the exact shape of the chair can improve the depth outline of the chair. (3) In most areas the
two modalities positively enforce each other (e.g. the vertical wall (dark blue) supports a smooth depth map. The cross-modality influences between these
two modalities are exploited by our joint refinement network, which fuses the features from the input prediction maps and jointly processes both modalities
for an overall prediction improvement. (Best viewed in color.)

indeed David Marr describes it properly in his book ([4]

page 102): “This principle [of modular design] is important

because if a process is not designed in this way, a small

change in one place has consequences in many other places.

As a result, the process as a whole is extremely difficult to

debug or to improve, whether by a human designer or in the

course of natural evolution.”

To summarize, our main contributions are threefold:

• For both tasks, semantic segmentation and depth esti-

mation, we improve on the state-of-the-art results for

the NYU-Depth v2 benchmark [5]. We achieve this

by proposing a new joint refinement network which

takes as input the results of the current state-of-the-art

networks for the individual tasks.

• For modular architecture designs we propose an exper-

imental setup to measure the cross-modality influence

quantitatively. Such experiments are well-known in neu-

roscience, but have not yet been used in computer vision

or robotics, to the best of our knowledge.

• We analyze different network designs with respect to

their cross-modality influence and show that there is

indeed a relationship between the cross-modality influ-

ences and tasks performances. Although not linear, this

relationship can be used to understand different design

choices in network architectures.

II. RELATED WORK

A large body of work in computer vision has focused

on the two separate problems of semantic segmentation

and depth estimation. In the review below, we focus on

techniques that specifically address multi-modal architectures

or perform semantic segmentation and depth estimation from

a single monocular image.

Single tasks. Conditional Random Fields (CRFs) are popular

models that have been used in both depth estimation task,

e.g. [6], [7], [8], [9], [10], [11], and semantic segmentation

task, e.g. [12], [13]. Such approaches predominantly use

hand-crafted features. Recently, convolutional neural net-

works (CNNs) are driving advances in computer vision, such

as for image classification [14], object detection [15], [16],

recognition [17], [18], semantic segmentation [19], [20], pose

estimation [21] and depth estimation [22]. The success of

CNNs is attributed to their ability to learn rich feature repre-

sentations as opposed to hand-designed features. Eigen et al.

[22] trained multi-scale CNNs for depth map prediction from

a single image. Liu et al. [23] propose deep convolutional

neural fields for depth estimation, where a CRF is used to

explicitly model the relations of neighboring superpixels, and

the potentials are learned in a unified CNN framework. Eigen

and Fergus [24] extend their previous method [22] to predict

depth, surface normals and semantic labels sequentially with

a common multi-scale CNN. A number of recent approaches,

including recurrent CNNs (R-CNNs) [25] and fully convo-

lutional networks (FCN) [20] have shown a significant boost

in accuracy by adapting state-of-the-art CNN-based image

classifiers to the semantic segmentation problem. Pinheiro

and Collobert [25] present a feed-forward approach for scene

labeling based on an R-CNN. The system is trained in an

end-to-end manner over raw pixels and models complex

spatial dependencies with low computational cost. FCNs [20]

address the coarse-graining effect of the CNN by upsampling

the feature maps in deconvolution layers and combining fine-

grained and coarse-grained features during prediction.

Joint models. Joint models of multiple tasks have been

exploited in the computer vision literature to a certain

extent, e.g. joint image segmentation and stereo reconstruc-

tion [26], [27], [28], joint object detection and semantic

segmentation [29], joint instance segmentation and depth

ordering [30], as well as joint intrinsic image, objects, and

attributes estimation [2]. However, joint semantic segmen-

tation and depth estimation from a single image has been

rarely addressed, with a few exceptions [31], [32]. These
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Fig. 2. Overall Network. JRN receives as input the predictions of two
independent single modalities: Depth and semantic labeling. Inspired by
[24] the inputs are considered at different scales (1/8, 1/4 and 1/2 of the
total image resolution) in order to capture different levels of details. C is the
number of output feature channels from each scale branch (see III-B). After
processing the three scale branches, the computed features are concatenated,
convolved and then mapped to the two respective output maps.

works explicitly reason about class segmentation as well

as depth estimation from a single image. Ladicky et al.
[31] jointly trained a canonical classifier considering both

the loss from semantic and depth labels of the objects.

However, they use local regions with hand-crafted features

for prediction, which is only able to generate very coarse

depth and semantic maps. Wang et al. [32] formulate the joint

inference problem in a two-layer Hierarchical Conditional

Random Field (HCRF). The unary potentials in the bottom

layer are pixel-wise depth values and semantic labels, which

are predicted by a CNN trained globally using the full

image, while the unary potentials in the upper layer are

region-wise depth and semantic maps which come from

another CNN-based regressor trained on local regions. The

mutual interactions between depth and semantic information

are captured through the joint training of the CNNs and

are further enforced in the joint inference of HCRF. They

consider an alternating optimization strategy by minimizing

one, fixing the other. In contrast, our model performs full

joint inference.

Multi-modal learning and representation. Many different

communities have addressed the problem of multi-modal

learning and representation, such as machine learning [33],

[34], [35], human-computer interaction [36], [37], and neu-

roscience [38], [39]. In [33], the authors present a series of

tasks for multi-modal learning and show how to train deep

networks that learn features to address these tasks. In partic-

ular, they demonstrate cross modality feature learning, where

better features for downstream classification tasks are learned

from a video if both audio and video signals are present

during the feature learning stage. While [33] deals with an

unsupervised feature learning, our approach uses supervised

learning. Furthermore, unlike [33] we perform an analysis

on the effect of different network architectures on the cross-

modality influence. Similarly, in the neuroscience commu-

nity, the authors of [38] investigated the influence of the face-
benefit in speech and speaker recognition. Apparently, people

who have heard the voice and seen the face of a speaker

during training time are more likely to recognize both the

speaker and the spoken words from recorded audio only

during test time. Additionally, [39] revisited the face-benefit
experiment and showed a joint audio-visual processing by

the brain for the classification task, indicating a joint feature

Fig. 3. A Scale Branch. On each scale there are first 20-dimensional
feature vectors extracted by performing 3x3 convolutions on each input
modality. Immediately thereafter these modality features are fused by
operation op. We also consider the number of channels C0 after the
fusion operation as a network design variable, which affects the cross-
modality influence. The subsequent channel number C is 60 by default
(Cat60, Sum60). Based on op, C0 and C we design five different network
architectures and analyze their properties in Sec. IV-B.

representation is key to superior performance. Canonical

correlation analysis (CCA) [40] is the de-facto approach for

learning a common representation of two different modalities

(so-called views) in the machine learning literature. Deep

CCA, a deep learning version of CCA, is introduced in [41].

It aims at learning a complex non-linear transformation of

two views such that the resulting representation is highly

correlated. It can be considered as a non-linear extension of

the linear CCA.

III. JOINT REFINEMENT NETWORK

In this section, we present the details of the CNN archi-

tecture which we used to predict jointly the depth map and

the semantic labeling. We also discuss different architectural

design decisions and their relation to the cross-modality

influence between two modalities.

A. Network Architecture

Our network decomposes into two parts: (i) indepen-

dent single-modality models that output predictions for each

modality separately and (ii) our joint refinement network

(JRN) that takes as input these prediction maps and outputs

refined predictions of all modalities. Our model does not have

any constraints on the choice of single-modality models. In

order to capture dependencies on different scales [24], we

employ a multi-scale architecture for JRN, as illustrated in

Fig. 2. It has three scale-branches Scale1, Scale2 and

Scale3 that work with different scales of the input and

have the same architecture, described in Fig. 3. On each

scale, 20-dimensional features are extracted by performing

3 × 3 convolutions on each input modality. After each

convolutional layer, a ReLU non-linearity is used. In the

next section, we consider different architecture designs for

the combination.

B. JRN Variants

In order to analyze and understand the cross-modality

influence, we design different variations of JRN. Then we

measure the cross-modality influence for designed JRN ar-

chitecture using the approach which we propose in section

III-D.

Concatenation. In the concatenation architecture we have

chosen concatenation operations for op in all scale branches
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consistently (cf. Fig. 3). Therefore, the number of channels

C0 after concatenation has doubled to 40. The simple con-

catenation of the single-modality features aims at achieving

cross modality features because the single-modality features

are subsequently convolved together. We call this variant

Cat60. Since concatenation is the weakest form of our

possible feature interactions, we subsequently refer to this

model as featuring a loose computation.

Summation. The summation architecture features an

element-wise sum as fusion operation op on each scale.

Since the channels are summed up during fusion, the number

of subsequent channels C0 is equal to 20. We call this

variant Sum60. In contrast to the Cat60 architecture this

network forces a joint feature representation. We refer to

this architecture as having a coupled computation later on.

Channel Squeezing. Besides summation of input features

we also consider the number of channels used after fusion

as an influencing factor on the cross-modality influence

and the overall network performance. We hypothesize that

fewer channels would generally enforce network to take

into account both modalities more during training of the

convolutional layers. Directly after the concatenation (op)

of the input features, which yields a 40-channel feature, the

number of channels C can be 10, 5 or 1. This gives us three

more network variations Cat10, Cat5 and Cat1. We still

classify the Cat10 network as loose computation whereas

the Cat5 and Cat1 networks feature coupled computation.

C. JRN Training

We define D′ and S′ as the depth and semantic label

prediction maps and D∗ and S∗ as the respective ground

truth maps. D′ and D∗ are maps assigning a depth value

in the range of [0.0, 10.0] meters to every pixel. S′ and

S∗ are k-channel maps, assigning a probability distribution

over k semantic classes to each pixel. We restrict the loss

computation to n valid pixels where we have both a depth

value and a semantic label as ground truth. The loss function

for JRN is a simple summation of single-task losses:

Ljoint(D
′
, S

′
, D

∗
, S

∗
) =

1

n

∑

i

(D′
i − D∗

i )2

D∗
i︸ ︷︷ ︸

Ldepth

− 1

n

∑

i

S
∗
i log(S

′
i)

︸ ︷︷ ︸
Lsemantic

(1)

The depth loss Ldepth is a relative quadratic distance

between prediction and ground truth map. For the semantic

loss Lsemantic we use the cross-entropy loss, where S′
i =

exp[zi]/
∑

s exp[zi,s] is the class prediction at pixel i given

the semantic output slice z of the last convolutional layer of

JRN. During training we keep the single-task networks fixed

and use their predictions as inputs to JRN. In the future

we plan to also perform end-to-end training of all networks,

single task networks and JRN. The internal weights of JRN

are initialized randomly. We train JRN jointly on both tasks

with the standard NYU-Depth v2 [5] train-test split.

D. Quantifying the Cross-Modality Influence

Inspired by the “face-benefit” experiment in [38] we

propose an evaluation proxy to measure the influence of a

Fig. 4. Cross-Modality Influence Test. In order to quantify the cross-
modality influence numbers we need to consider three different inference
setups: (A) Predicting both outputs X′ and Y ′ from two proper input maps
X and Y : (X′, Y ′) = f(X,Y ); (B) Muting the input channel Y and
computing X′ and Y ′: (X′, Y ′) = f(X); and (C) Muting the input
channel X and computing X′ and Y ′: (X′, Y ′) = f(Y ).

modality on the final model performance and quantify it in

a so-called influence number. During training time the JRN

is trained to jointly predict two outputs X ′ and Y ′ from

two input modalities X and Y . During inference time we

consider three different measurement setups as explained in

Fig. 4. The performance of the JRN predicts a particular

modality X ′ which is measured by a function AX (e.g.

“mean IOU” for X being semantic labeling or “rms(linear)”

for X being a depth map).

The cross-modality influences between the modalities are

directional and dependent on a particular JRN architecture

(represented by its transformation function f(.)) as well as

two performance functions AX and AY . The cross-modality

influence of input modality Y on the performance of the

prediction of X ′ measured under AX is defined as:

ωY→X′ = AX(f(X,Y ))−AX(f(X)). (2)

Consequently the complementary influence from X to Y ′

is defined as:

ωX→Y ′ = AY (f(X,Y ))−AY (f(Y )). (3)

Note that those influences are not necessarily symmetric.

We compute the influence values in the setup of a joint

semantic segmentation (X) and depth estimation (Y ) in Sec.

IV-C and analyze the relationship between the cross-modality

influences and the model performance.

IV. EXPERIMENTS

In this section, we introduce the dataset, and then describe

details of our implementation. After that we present a quanti-

tative and qualitative comparison. We conclude with a cross-

modality influence analysis.

A. Experimental setup

Dataset. We evaluate our proposed method on the NYU-

Depth V2 dataset [5]. This dataset consists of 1449 RGBD

images of indoor scenes, among which 795 are used for

training and 654 for test (we use the standard train-test

split provided with the dataset). Following [32], we also

map the semantic labels into five categories conveying strong

geometric properties, i.e. Ground, Vertical, Ceiling, Furniture

and Object, as it is shown in Fig. 5.

Implementation details. We use two state-of-the-art single

modality CNN models for providing the input depth-map and
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semantic segmentation prediction map. For depth input, we

use the inference code with pretrained model of Eigen et al.
[24] which is publicly available2. For semantic segmentation

prediction maps, we use the FCN model of Long et al. [20].

We implement our network in Caffe framework [42]. We

train joint refinement networks (Cat60, Cat10, Cat5,

Cat1 and Sum60) with 795 training images from NYU-

Depth V2 dataset [5] using SGD solver with batches of size

one. The learning rate is 0.001 for all the convolutional layers

and the momentum is 0.9. The global scale of the learning

rate is tuned to a factor of 5. Depending on the different

architectures and the number of channels in scale branches,

training JRN took 5 to 6 hours using an NVidia GTX Titan X.

We pass the absolute depth maps and the semantic prediction

maps to JRN.

Evaluation metrics. To evaluate the semantic segmentation,

we take Intersection over Union (IOU) and pixel accuracy

percentage as metrics. For the depth estimation task we use

several measures, which are also commonly used in prior

works [9], [22]. Given the predicted depth value of a pixel

di and the ground truth depth d∗i , the evaluation metrics are:

• Abs relative error (rel): 1
N

∑
i
|d∗

i −di|
d∗
i

;

• Squared relative error (rel(sqr)): 1
N

∑
i
|d∗

i −di|2
d∗
i

;

• Average log10 error (log10): 1
N

∑
i | log10 d∗i−log10 di|;

• Root mean squared error (rms(linear)):√
1
N

∑
i(d

∗
i − di)2;

• Root mean squared error (rms(log)):√
1
N

∑
i | log d∗i − log di|2;

• Accuracy with threshold thr: percentage (%) of

di s.t.max(
d∗
i

di
, di

d∗
i
) = δ < thr, where

thr ∈ {1.25, 1.252, 1.253};

B. Comparison of Results

We first compare our five different JRN architectures

described in Sec. III-B with each other (see Table I). We

observe that none of the networks consistently outperforms

all others in all metrics. However, the Sum60 network

is nearly the best for all metrics. Hence we chose it for

comparison with other models from related work.

For depth estimation, we compare our results with four

most recent methods, i.e. Eigen et al. [22], Joint HCRF [32],

Eigen & Fergus [24], and Liu et al. [23]. Table II shows the

quantitative results from all the algorithms. Our JRN network

consistently outperforms all the state-of-the art algorithms in

all metrics. The main difference to the models of Eigen et
al. [22], Eigen & Fergus [24] and Liu et al. [23] is that they

only deal with the depth estimation task, and hence cannot

exploit cross-modality influence. However, the Joint HCRF

[32] also jointly predicts a depth map and semantic labeling,

yet our model outperforms theirs by a large margin both in

depth estimation (8.7% rel(sqr) decrease) and in semantic

segmentation (10% mean IOU increase, see Table III). We

evaluate the published predicted depth maps from Eigen

& Fergus [24] and Eigen et al. [22] with our evaluation

2http://www.cs.nyu.edu/˜deigen/dnl/

script, and for Eigen et al. [22] we obtain the same reported

numbers. However, we do not obtain the same numbers

for [24] as reported. Our goal in this work is to improve

the performance of the input predictions. Therefore, this

comparison is fair since we use the same evaluation script

for the input and the output of our network.

For semantic segmentation, we compare two recent meth-

ods: Our baseline FCN [20] and Joint HCRF [32]. Results

are shown in Table III. We outperform the other methods for

all five classes. Compared with the baseline FCN [20] our

method is 1% better in mean IOU.

Qualitative results of both tasks are shown in Fig. 5. Even

though our method does not use superpixels or any explicit

CRF model, it tends to produce large homogeneously labeled

regions.

C. Performance Cross-Modality Influence Analysis

We compute the cross-modality influence for all five JRN

networks by looking at the relation between the cross-

modality influence numbers and the performance in the

respective modalities (see Fig. 7). We observe that there

is no linear relationship between cross-modality influence

and performance but they rather lie within an area which is,

according to our observations, upper-bounded by a concave

curve. This means that a larger influence between modalities

does not guarantee better performance in the respective met-

ric. Indeed a large negative effect can hamper performance

(see Fig. 6).

Based on our findings about cross-modality influence,

we hypothesize that the relationship between cross-modality

influence and performance can be generalized into a plot

which is sketched in Fig. 8. The cross-modality influence

arises from certain model design decisions, as well as

from modality combinations for a particular end-task. For

example, we have seen in our experiments that moderately

transferring shapes and class-wise depth priors from the

semantic map into the depth map can help improving depth

estimation (see Fig. 5 bottom). However, the cross-modality

influence ωS→D′ can also be too strong (large positive influ-

ence number) which causes a decrease in performance. For

example, shapes from semantic segmentation can cause halos

and artifacts in the depth map (see Fig. 6). We conclude that

inspecting performance vs. cross-modality influence plots is

a useful way to find appropriate modular architectures. Fur-

thermore, these plots may help identifying complementary

modalities to further leverage the cross-modality influence

for task performance improvements.

V. CONCLUSIONS

Inspired by work in neuroscience we have introduced

a systematic way to measure the cross-modality influence

present in our JRN networks. By doing so, we were able

to identify a network which achieves a measurable influence

between modalities, has an overall good performance com-

pared to other JRN networks, and is consistently better than

the state-of-the-art input modalities.
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Fig. 5. Two qualitative results of our Sum60 network compared with the input (i.e state-of-the-art). Each top row (from left to right): Image, ground
truth semantic labeling, result of [20] and our result. Each bottom row (from left to right): Ground truth depth map, result of [24] and our result. The first
example depicts an improvement in semantic labeling, where ground label (yellow) has been removed (next to object label (red)). In the second example,
the depth edges of the upper bed frame are better recovered in our result (best viewed zoomed-in). Please note that our results are smooth and follow
edges in the input image, despite having no explicit CRF model.

Fig. 6. Negative influence. From left to right: Input image, our semantic labeling of the Cat10 network, semantic labeling of the Sum60 network,
ground truth depth, result of our Cat10 network, result of our Sum60 network. Despite the Cat10 network having a higher cross-modality influence
number ωS→D′ than the Sum60 network (cf. Fig. 7 top right), the respective depth accuracy (-rel(sqr)) of the Cat10 network is lower. This is visible in
the image where the picture frame has received a wrong depth in the Cat10 network result, compared to the Sum60 network result. (Image crops shown
for visualization purpose.)
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TABLE I

COMPARISON OF DIFFERENT JRN ARCHITECTURES. WE COMPARE OUR DIFFERENT JRN NETWORKS WITH EACH OTHER AND ALSO WITH OUR

INPUT SINGLE MODALITY NETWORKS FOR DEPTH [24] AND SEMANTIC SEGMENTATION [20]. BEST RESULTS ARE SHOWN IN BOLD.

Error (Depth) Accuracy (Depth) Accuracy (Seg.)
(lower is better) (higher is better) (higher is better)

rel rel(sqr) log10 rms(linear) rms(log) δ < 1.25 δ < 1.252 δ < 1.253 Mean IOU Pix.Acc.
Input [24]&[20] 0.158 0.125 0.070 0.687 0.221 0.751 0.946 0.987 53.284 72.268
Cat60 0.158 0.124 0.0686 0.678 0.218 0.760 0.947 0.987 54.206 72.957
Sum60 0.157 0.123 0.068 0.673 0.216 0.762 0.948 0.988 54.184 72.967
Cat10 0.158 0.125 0.069 0.681 0.219 0.756 0.946 0.987 54.080 72.953
Cat5 0.160 0.125 0.068 0.670 0.218 0.762 0.946 0.986 54.120 72.952
Cat1 0.161 0.126 0.069 0.669 0.219 0.759 0.946 0.987 53.989 72.864

TABLE II

DEPTH COMPARISON. BASELINE COMPARISONS OF DEPTH ESTIMATION ON THE NYU-DEPTH V2 DATASET. OUR METHOD OUTPERFORMS

STATE-OF-THE-ART METHODS.

Error (lower is better) Accuracy (higher is better)
rel rel(sqr) log10 rms(linear) rms(log) δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [22] 0.215 0.212 - 0.907 0.285 0.611 0.887 0.971
Joint HCRF [32] 0.220 0.210 0.094 0.745 0.262 0.605 0.890 0.970
Eigen & Fergus [24] 0.158 0.125 0.070 0.687 0.221 0.751 0.946 0.987
Liu et al. [23] 0.213 - 0.087 0.759 - 0.650 0.906 0.976
Ours (Sum60) 0.157 0.123 0.068 0.673 0.216 0.762 0.948 0.988

TABLE III

SEMANTIC SEGMENTATION COMPARISON. CLASS-WISE RESULTS REPORTING MEAN IOU AND PIXEL-WISE ACCURACY FOR SEMANTIC

SEGMENTATION ON NYU-DEPTH V2 WITH FIVE CLASSES. BEST RESULTS ARE SHOWN IN BOLD.

Ground Vertical Ceiling Furniture Object Mean IOU Pix.Acc.
Semantic HCRF [32] 61.84 66.344 15.977 26.291 43.121 42.715 69.351
Joint HCRF [32] 63.791 66.154 20.033 25.399 45.624 44.2 70.287
FCN16s NYU-5 [20] 66.578 67.354 46.351 35.71 50.429 53.284 72.268
Ours (Sum60) 67.87 68.707 48.166 35.82 50.770 54.267 73.035

D S'
53.98

54.12

54.20

54.08

M
ea

n-
IO

U

Cat5

Sum60

Cat10

Cat60
Cat1

S D'

12.66

12.58

12.37

12.44

12.54re
l(

sq
r)

Cat1

Cat5

Sum60 Cat60

Cat10

ωD→S′ ωS→D′

Cat60 0.94 4.9

Cat10 0.39 4.93

Cat5 0.10 -0.24

Sum60 0.32 1.11

Cat1 7.59 -0.40

Fig. 7. Performance vs. cross-modality influence plots for all models.
We use the mean IOU measure for semantic labels (AS ), and −rel(sqr)∗100
for depth (AD). The right table shows all influence numbers ωD→S′ and
ωS→D′ for all models. The top figures are the respective performance-
influence plot. Both plots exhibit a peak where the optimal trade-off between
cross-modality influence and evaluated performance is achieved. We see that
the Sum60 and Cat60 models are at the peaks of the respective plots. We
colored models in red which feature loose computation and in green which
feature coupled computation (see Sec. III-B). This supports the idea that the
cross-modality influence number can facilitate the systematic exploration of
network architectures.

Cross-modality in uence

In uence
Performance
Equilibrium

Fig. 8. The performance vs. cross-modality influence curve. For each
modality pair (X,Y ) and in each modality influence direction Y → X′
and X → Y ′ the relationship between the magnitude of the cross-modality
influence and the prediction performance needs to be balanced into an
equilibrium. This cross-modality influence analysis will be helpful when
designing models which should operate on multiple modalities and carry
out joint predictions.
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