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Abstract

Existing methods for 3D scene flow estimation often fail

in the presence of large displacement or local ambiguities,

e.g., at texture-less or reflective surfaces. However, these

challenges are omnipresent in dynamic road scenes, which

is the focus of this work. Our main contribution is to over-

come these 3D motion estimation problems by exploiting

recognition. In particular, we investigate the importance of

recognition granularity, from coarse 2D bounding box es-

timates over 2D instance segmentations to fine-grained 3D

object part predictions. We compute these cues using CNNs

trained on a newly annotated dataset of stereo images and

integrate them into a CRF-based model for robust 3D scene

flow estimation - an approach we term Instance Scene Flow.

We analyze the importance of each recognition cue in an ab-

lation study and observe that the instance segmentation cue

is by far strongest, in our setting. We demonstrate the effec-

tiveness of our method on the challenging KITTI 2015 scene

flow benchmark where we achieve state-of-the-art perfor-

mance at the time of submission.

1. Introduction

3D motion estimation is a core problem in computer vi-

sion with numerous applications. Consider, for instance, an

autonomous car navigating through a city. Besides recog-

nizing traffic participants and identifying their 3D locations,

it needs to precisely predict their 3D position in the future.

In this paper, we focus on 3D scene flow estimation for

autonomous driving scenarios. More specifically, given two

consecutive stereo images we want to predict the 3D mo-

tion of every pixel. With the advent of challenging real-

world benchmarks, such as the KITTI 2012 [10] and KITTI

∗ Joint first authors with equal contribution.

2D Bounding Box 2D Instance Segmentation 3D Object Coordinates

Figure 1: Motivation. Top: Two consecutive frames (over-

laid) from the KITTI 2015 scene flow dataset. Large dis-

placements and specular surfaces are challenging for cur-

rent scene flow estimation algorithms. Bottom: Recogni-

tion can provide powerful geometric cues to help with this

problem. In this work, we investigate: 2D bounding boxes,

2D instance segmentations and 3D object coordinates.

2015 [22], great progress has been made in this area. In par-

ticular, segmentation-based formulations which gain their

strength by reasoning over piece-wise planar patches [41]

or segmenting the scene into its rigidly moving compo-

nents [22] dominate the leaderboards.

However, existing methods rely heavily on local features

for computing the data term and for initialization. As a

consequence, even state-of-the-art methods fail in the pres-

ence of very large displacements or local ambiguities from,

e.g., textureless or reflective surfaces. Consider Fig. 1 (top)

which shows an image from the KITTI 2015 scene flow

dataset [22]. Due to the large displacement between frames,

the front wheel in the first frame appears similar to the back
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wheel in the second frame, resulting in wrong predictions.

Furthermore, the small amount of texture and the reflective

car surface complicate the matching task.

In this paper, we propose to exploit recognition to facil-

itate this problem. In particular, we investigate the benefits

of semantic grouping and fine-grained geometric recogni-

tion for this task as illustrated in Fig. 1. We will formu-

late the output of the recognition task as a new constraint,

besides standard constraints such as local appearance and

3D motion-smoothness within an image, in a CRF-based

framework.

For semantic grouping, we consider two scenarios: i) a

bounding box around the visible part of each semantic in-

stance, and ii) a pixel-wise segmentation of the visible part

of each semantic instance. While the latter output provides

a more detailed mask of the object, and hence may be more

beneficial for the scene flow task, it is also a harder task to

solve, and hence may contain segmentation errors. While

these cues do not provide additional geometric evidence,

they constrain the space of possible rigid body motions:

pixels which are grouped together are likely to move as a

single rigid object in the case of vehicles. We integrate both

cues into the scene flow task by enforcing consistency be-

tween neighboring views (either in time or space). In short,

a pixel within an instance region (bounding box or segment)

in one frame should be mapped to an instance in the other

frame. Furthermore, all pixels within an instance should

move as one rigid entity.

To obtain the bounding box or segmentation masks, we

utilize an existing state-of-the-art approach - the multi-task

network cascade (MNC) from Dai et al. [6]. In contrast

to [6], we achieve improved outputs, by providing a dense

depth map as additional input to the network. To train the

CNN, we annotated 400 stereo images from the KITTI 2015

benchmark of Menze et al. [22] using in-house annotators.

For fine-grained geometric recognition we train a new

convolutional neural network (CNN) on 2D instance seg-

mentations of MNC which predicts the continuous 3D ob-

ject parts, also known as 3D object coordinates [3,4,25,33,

34], for each pixel inside the instance mask. The 3D object

coordinates specify the relative 3D location of an object’s

surface point with respect to the object’s local coordinate

frame as shown in Fig. 1 (bottom-right) with illustrative col-

ors. Thus, they provide a detailed geometric cue for match-

ing pixels in neighboring frames, even in the presence of

large displacements.

The fine-grained geometric recognition and the seman-

tic grouping have, certainly, a different trade-off between

modeling-power versus prediction accuracy. If the recogni-

tion task was to be solved perfectly well, the continuous ob-

ject part would be the strongest geometric cue, followed by

the segmentation mask and the bounding box. On the other

hand, as we will see experimentally, the continuous object

parts are most challenging to predict precisely, followed by

the segmentation mask and the bounding box. Given this

trade-off, the key question addressed in this work is:

Which level of recognition is most beneficial for the

scene flow task, when combining different cues, i.e. local

appearance, 3D motion-smoothness and recognition-based

geometric constraint, in a CRF-based framework?

Our CRF framework is based on [22] and termed In-

stance Scene Flow. We validate the benefits of recognition

cues for scene flow on the challenging KITTI 2015 bench-

mark [22]. Firstly, we conduct a detailed ablation study for

the three levels of recognition granularity, i.e. 2D bound-

ing box, 2D segmentation mask, and continuous 3D object

parts. From this study, we conclude that the instance seg-

mentation cue is by far strongest, in our setting. Secondly,

we show that our Instance Scene Flow method significantly

boosts the scene flow accuracy, in particular in challenging

foreground regions. Alongside, we obtain the lowest overall

test errors amongst all methods at time of submission. Our

code and datasets will be made available upon publication.

In short, our contributions are:

• A new 3D scene flow method, leveraging recognition-

based geometric cues to achieve state-of-the-art per-

formance on the challenging KITTI 2015 scene flow

benchmark, at the time of submission.

• A detailed ablation study of the importance of recogni-

tion granularity, from coarse 2D bounding boxes over

2D instance segmentations to fine-grained 3D object

part predictions, within our scene flow framework.

• High-quality, instance-level annotations of 400 stereo

images from the KITTI 2015 benchmark [22].

2. Related Work

In the following, we review the most related works on

image-based scene flow estimation, semantic priors and ob-

ject coordinates. For an overview of RGB-D methods (e.g.,

using the Kinect), we refer to [9, 13, 14, 29, 43, 43].

Scene Flow: Following the work of Vedula et al. [36, 37]

several approaches formulate 3D scene flow estimation as a

variational optimization problem [2, 15, 28, 35, 39, 42]. Un-

fortunately, coarse-to-fine variational optimization suffers

when displacements are large. Thus, slanted-plane mod-

els [44,45] have recently been introduced [20,22,24,38,40]

which gain their robustness by decomposing the scene into a

collection of rigidly moving planes and exploiting discrete-

continuous optimization techniques.

While these methods have demonstrated impressive per-

formance on the challenging KITTI benchmark [10, 22],

they fail to establish correspondences in textureless, reflec-

tive or fast-moving regions due to violations and ambigui-

ties of the data term and weak prior assumptions. In this pa-

2575



per, we propose to approach this problem using fine-grained

instance recognition and 3D geometry information, result-

ing in significant accuracy gains.

Semantic Priors: Several works have considered seman-

tic information for stereo or optical flow estimation. Güney

et al. [12] presented a model for stereo estimation where 3D

object hypotheses from a CAD model database are jointly

estimated with the disparity map. Hur et al. [16] proposed

a model for joint optical flow and semantic segmentation.

In particular, they classify the scene into static and dynamic

regions and introduce a constraint which measures how well

the homography of a superpixel meets the epipolar con-

straint. Sevilla-Lara et al. [30] used semantic segmentation

to identify object instances and combine per-object layered

flow predictions [31] with DiscreteFlow [23]. Bai et al. [1]

proposed a model which first identifies car instances and

then predicts each rigidly moving component in the scene

with a separate epipolar flow constraint.

While existing methods leverage recognition to aid ei-

ther reconstruction or motion estimation, in this paper we

consider recognition for the 3D scene flow problem, i.e.,

the combination of the two. In contrast to flow-only meth-

ods [1] that need to search for correspondences along epipo-

lar lines, our method exploits the semantic cues as well as

the geometry which allows us to estimate the rigid motion

between frames more robustly and leads to significantly im-

proved results compared to all baselines. Furthermore, we

are (to the best of our knowledge) the first to investigate the

impact of recognition granularity on the task, ranging from

coarse 2D boxes to fine grained 3D object coordinates pre-

dictions.

3D Object Coordinates: Continuous 3D object parts, also

known as 3D object coordinates, have so far mainly been

leveraged in the context of 3D pose estimation [3,4,25,33],

camera re-localization [34] and model-based tracking [19].

The typical approach is to train a random forest for pre-

dicting instance-specific object probabilities and 3D object

coordinates with respect to a fixed local coordinate system.

These predictions are used to fit a 3D model of the known

object, resulting in the 3D object pose.

In this work, we explore the possibility of using object

coordinates as a continuous labeling for the surface points

of the object.

3. Method

This section describes our approach to 3D scene flow es-

timation. The overall work flow of our approach is illus-

trated in Fig. 2. Given the 4 RGB images we extract 3D

points (XYZ) for each pixel in camera coordinate system

using a stereo method (see Section 4 for details). Based on

the RGB and XYZ values, we train a multi network cascade

(MNC) [6] to predict 2D bounding boxes and 2D instance

segmentations. We train a CNN to predict object coordi-

nates for car instances. Finally, we integrate the bounding

box, instance and object coordinates cues into a slanted-

plane formulation and analyze the importance of each cue

for the scene flow estimation task. The remainder of this

section is structured as follows.

As our goal is to analyze the impact of different levels of

recognition granularity, we first describe the inputs to our

method in Section 3.1 and Section 3.2. In particular, we are

interested in improving scene flow estimation of vehicles

which are challenging due to their large motion and non-

lambertian appearance. In Section 3.3, we finally show how

these predictions can be integrated into a CRF model for 3D

scene flow estimation.

3.1. 2D Bounding Boxes and Instances

As discussed before, recognizing and segmenting objects

is imperative for our approach. For this task, we use the

state-of-the-art Multi-task Network Cascades (MNC) pro-

posed by Dai et al. [6] to obtain bounding boxes and seg-

mentation masks of all cars present in the scene. Unlike the

standard MNC framework which operates on RGB images,

we provide the network with an RGB-XYZ image, where

XYZ denotes the 3D scene coordinates, i.e., the 3D loca-

tion of every pixel in the scene in camera coordinates. The

3D location for each pixel is computed from disparity maps,

see Section 4 for details.

We pre-train the network using Pascal VOC and fine-

tune it using 3200 coarse annotations of KITTI [10] pro-

vided by [5]. We obtained 200 images with 1902 pixel-

accurate instance annotations from the KITTI 2015 Stereo

benchmark [22] using in-house annotators. We further re-

fined the model with these fine annotations. The final accu-

racy (IoU-50%) on the validation set of [5] is 83% as com-

pared to 78% when using only RGB images.

3.2. 3D Object Coordinates

3D object coordinates specify the 3D location of the sur-

face of an object with respect to a local coordinate frame,

see Fig. 1 for an illustration. They can be viewed as a fine

grained unique geometric labeling of the object’s surface

which is independent of the viewpoint and can be used to

establish correspondences between frames, which we ex-

pect to be more robust to appearance changes than corre-

spondences based on sparse feature matching.

While random forests have been used for estimating ob-

ject coordinates when the target instance is known [3, 4,

19, 34], we found that a CNN-based approach leads to sig-

nificantly better object coordinates predictions as also ev-

idenced by our experiments in Section 4. We use a mod-

ified version of the encoder-decoder style CNN proposed

in [32] for estimating the object coordinates at each pixel.

As above, the input to the CNN is an RGB-XYZ image as
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Figure 2: Work flow for our approach. Note that each intermediate step uses as input all of the previous results. Given

the four RGB input images (t/t+1, left/right) we compute 3D points (XYZ) for each pixel. For each of the four RGB,XYZ

image-blocks we obtain instance segmentations, alongside bounding boxes. The M instances are processed individually to

obtain object coordinates for each instance, using our object coordinates CNN. Finally, all this information is integrated into

our Instance Scene Flow method (ISF) to produce the final output.

well as the instance prediction from the MNC. The output

of the CNN is a 3 layer regression which stores the X, Y

and Z coordinates for each point of the input. We refer to

the architecture of our CNN in supplementary material. The

encoder part comprises a set of 5 convolutional layers with

a stride of 2 in each layer, followed by a set of 3 fully con-

nected layers. The decoder part has 5 deconvolutional lay-

ers followed by a 3D regression layer which predicts the 3D

object coordinates.

3.3. Scene Flow Model

We now describe our scene flow model which is based

on [22] but adds two new components to it, in particular

an instance sensitive appearance term and a term which

encourages object coordinates to align across frames. For

making the paper self-contained, we specify the full model.

Notation: We first describe the notation of the inputs to

the scene flow model which are pre-computed as described

in the previous section and fixed during inference. Let V =
{0, 1, 2, 3} denote the set of views as illustrated in Fig. 3 and

let Iv ∈ R
w×h×3 denote the input image corresponding to

each view. For each view v ∈ V , we compute the following

information: first, our MNC predicts instance label maps

Mv ∈ {0, . . . , |Mv|}
w×h which determine the predicted

semantic instance label for each pixel in each view. In our

experiments, these maps are either coarse 2D bounding box

segmentations or more accurate 2D instance segmentations

which are both computed via MNC. Background pixels are

assigned the label Mv(p) = 0 and foreground pixels are

assigned positive labels. Note that instance labels do not

correspond across frames as the correspondence is unknown

a-priori and needs to be inferred jointly with the scene flow.

Furthermore, we denote the 3D object coordinates predicted

by the network with Cv ∈ [−1, 1]w×h×3.

We now describe the parameters of our model which

are optimized during inference. Let S denote the set of

superpixels in the reference view and O denote the set of

objects in the scene. Each superpixel i ∈ S is associ-

ated with a region Ri in the reference image and a variable

si = (ni, ki)
T, where ni ∈ R

3 describes a plane in 3D via

nT

i x = 1. Further, let ki ∈ {0, . . . , |O|} index the object

which the superpixel is associated with. Here |O| denotes

an upper bound on the number of objects we expect to see,

and k = 0 refers to the background object with k > 0 to

other traffic participants. Each object j ∈ O is associated

with a variable oj ∈ SE(3) which describes its rigid body

motion in 3D. Each superpixel associated with object j in-

herits its rigid motion parameters oj ∈ SE(3). In combina-

tion with the plane parameters ni, this fully determines the

3D scene flow at each pixel inside the superpixel.

Energy Model: Given the left and right input images of

two consecutive frames (Fig. 3), our goal is to infer the 3D

geometry of each superpixel ni in the reference view, the

association to objects ki and the rigid body motion of each

object oj . We formulate the scene flow estimation task as an

energy minimization problem comprising data, smoothness

and instance terms:

ŝ, ô = argmin
s,o

ϕ(s,o)
︸ ︷︷ ︸

data

+ ψ(s)
︸︷︷︸

smooth.

+ χ(s,o)
︸ ︷︷ ︸

instance

(1)

We summarize all variables involved in the optimization

with s = {si|i ∈ S} and o = {oi|i ∈ O}. For clarity

of exposition we omit all weight parameters of the model.

Data Term: Our data term encodes the assumption that

corresponding points across all images should be similar in

appearance:

ϕ(s,o) =
∑

i∈S

∑

p∈Ri

∑

v∈V

ϕD
v (p,q) (2)

q = K
(
Rv(oki

)− tv(oki
)nT

i

)
K−1

︸ ︷︷ ︸

homography (view 0 → view v)

p (3)

Here, V = {1, 2, 3} denotes the set of target views and q is

the location of pixel p in reference view 0 mapped into the
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Figure 3: Geometric Relationship between reference and

target views. Pixels in the reference view are mapped to a

pixels in a target view via their depth and rigid body motion.

target view v ∈ V according to the calibration matrix K,

the rigid body motion Rv|tv of the corresponding object

oki
and the plane parameters of the associated superpixel

ni. See Fig. 3 for an illustration.

The data cost ϕD
v (p,q) compares the appearance at pixel

p in reference image 0 with the appearance at pixel q in

the target view v ∈ V . In our experiments, we use Cen-

sus descriptors [46] which are robust to simple photometric

variations [22, 41, 45]. To guide the optimization process

and overcome local minima we additionally add a robust ℓ1
loss to ϕD

v . This loss measures the difference with respect

to sparse DiscreteFlow correspondences [23] for the flow

terms (v = 2, 3) and depth estimates from SPS-stereo [45]

for the stereo term (v = 1).

Smoothness Term: The smoothness term encourages co-

herence of adjacent superpixels in terms of depth, orienta-

tion and motion. It decomposes as

ψ(s) = γS
ij

∑

i∼j

ψG
ij(ni,nj) + ψM

ij(si, sj) (4)

with the following geometry (G) and motion (M) terms:

ψG
ij(ni,nj) =

∑

p∈Bij

ρ (d(ni,p)− d(nj ,p))

+ ρ
(
1− |nT

i nj |/(‖ni‖‖nj‖)
)
,

ψM
ij(si, sj) = γM

ij(ni,nj) [ki 6= kj ].

Here, d(n,p) denotes the disparity of plane n at pixel p in

the reference image, Bij is the set of shared boundary pixels

between superpixel i and superpixel j, and ρ is the robust

ℓ1 penalty. The instance-sensitive weight γS
ij is defined as

γS
ij = 1− βS · [(i, j) ∈ M] (5)

where M denotes the set of adjacent superpixel pairs where

exactly one of the superpixels lies on an object instance.

β ∈ [0, 1] is a hyper-parameter which weighs down the

costs of discontinuities for adjacent superpixels in M. Note

that this weighting is only possible in the presence of in-

stance predictions.

The geometry-sensitive motion weight is defined as

γM
ij(ni,nj) = exp



−
λ

|Bij |

∑

p∈Bij

(d(ni,p)− d(nj ,p))
2





× |nT

i nj |/(‖ni‖‖nj‖)

encouraging motion boundaries to align with 3D folds and

discontinuities rather than within smooth surfaces.

Instance Term: The instance term χ(s,o) measures the

compatibility of appearance and part-labeling induced by

the 3D object coordinates when warping the detected in-

stances into the next frame. It takes the following form

χ(s,o) =
∑

i∈S

∑

p∈Ri

∑

v∈V

χI
v(p,q) (6)

with

χI
v(p,q) = [M0(p) = 0 ∨Mv(q) = 0] · λ + (7)

[M0(p) > 0 ∧Mv(q) > 0] ·
(
χA
v (p,q) + χL

v(p,q)
)

Here, q is calculated as in Eq. 3 and the appearance (A)

potential and the part labeling (L) potential are defined as

χA
v (p,q) = ‖I0(p)− Iv(q)‖1 (8)

χL
v(p,q) = ‖C0(p)−Cv(q)‖1 (9)

and measures the difference in appearance I and 3D ob-

ject coordinates C between image location p in the ref-

erence view and q in the target view, respectively. While

the data term in Eq. 2 also evaluates appearance, we found

that the Census descriptors work well mostly for textured

background regions. In contrast, it returns noisy and unreli-

able results in the presence of textureless, specular surfaces

such as on cars. However, as evidenced by our experiments,

including an additional ℓ1 constraint on appearance for in-

stances leads to significantly better estimates in those cases.

This observation is in accordance with recent works on di-

rect visual odometry and SLAM [7, 8, 27] which use simi-

lar measures to reliably estimate the camera pose in weakly

textured environments. In contrast to them, here we exploit

this constraint to estimate the relative pose of each individ-

ual weakly textured object in the scene.

The intuition behind this term is as follows: when warp-

ing the recognized instances from the reference frame into

the target frame according to the estimated geometry and

motion, the appearance as well as the part labeling in-

duced by the object coordinates should agree. The term

[M0(p) > 0 ∧ Mv(q) > 0] ensures that these constraints

are only evaluated if both the reference and the target pixel

belong to a detected instance (i.e., when M > 0). However,
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Algorithm 1 Optimization

1: Input: Iv , Mv , Cv for v ∈ V
2: Initialize s and o as described in “Initialization”

3: for all iterations n = 1, . . . , N do

4: for all i ∈ S do

5: Draw samples for si (Gaussian)

6: for all j ∈ O do

7: Draw samples for oj (MCMC)

8: Run TRW-S [18] on discretized problem

9: Output: ŝ, ô

as both χA
v and χL

v are positive terms the model prefers to as-

sociate instances with background regions which incurs no

additional cost compared to associating instances with in-

stances. We therefore incorporate an additional term which

yields an appropriate bias λ and favors the association of

instances.

Optimization: For optimizing Eq. 1, we leverage max-

product particle belief propagation with TRW-S [18] as pro-

posed in [22]. At each iteration this optimization algo-

rithm discretizes the continous variables by drawing sam-

ples around the current maximum-a-posteriori (MAP) solu-

tion and runs TRW-S until convergence before resampling.

However, we found that this approach gets easily trapped

in local minima, in particular due to the highly non-convex

energy function associated with the appearance of the fore-

ground objects.

We thus modify their sampling strategy as shown in Al-

gorithm 1, which leads to better results. While the origi-

nal algorithm [22] discretizes the continuous variables (in

particular the rigid body motions o) by sampling from a

Gaussian centered at the current MAP estimate, we cre-

ate samples by running a Markov chain based on the ap-

pearance term in Eq. 6 for each object individually. More

specifically, our sampling energy warps all pixels inside an

instance based on the predicted depth and the rigid body

motion of the sample, and measures the photoconsistency

between reference and target views using the ℓ1 norm. This

“informed” way of sampling ensures that TRW-S has ac-

cess to high-quality samples compared to noisy estimates

drawn around the current MAP solution. For sampling the

geometry variables (i.e., normals), we follow [22].

The hyper parameters in our model are estimated using

block coordinate descent on a train/validation split.

Initialization: As we are presented with a complex NP

hard optimization problem in Eq. 1, initialization of param-

eters is an important step. We describe the details of our

initialization procedure in the following.

We initialize the geometry parameters using dense dis-

parity maps and the object hypotheses/motion variables

using sparse flow predictions and the predicted bounding

boxes/instances. More specifically, we robustly fit all super-

pixel parameters to the disparity estimates and aggregate all

sparse flow estimates for each instance to robustly fit a rigid

body motion to it via RANSAC. We refer to Section 4 for

details on the particular choice of input algorithms.

For the instance-based algorithms, we aggregate the

sparse flow estimates directly based on the instance masks

and robustly fit a rigid body motion to it via RANSAC.

Given the high quality of the instance predictions, this leads

to very robust initializations. For baselines which do not

leverage recognition we follow [22] and initialize objects

based on clustering sparse 3D scene flow estimates which

disagree with the background motion. Based on this clus-

tering, we initialize the associations and poses using robust

fitting using RANSAC. We refer the reader to [22] for fur-

ther details.

While we have also experimented with color histograms

and pose prediction to support the assignment of instances

across frames, we found that aggregating sparse flow vec-

tors [23] and dense geometry [21] allows for correctly as-

sociating almost all objects. We thus don’t use such an ad-

ditional term in the model, which, however, could be easily

integrated to solve more challenging association problems

as present in the KITTI 2015 scene flow benchmark.

Runtime: Our MATLAB implementation with C++ wrap-

pers requires on average 40 seconds for each of the 10 it-

erations of the optimization described in Algorithm 1. This

leads to a runtime of 7 minutes for processing one scene

(4 images) on a single i7 core running at 3.0 Ghz. In

addition, the inputs to our methods namely, dense dispar-

ity maps, sparse flow predictions and predicted bounding

boxes/instances require on average 3 minutes for process-

ing one scene, leading to a total runtime of 10 minutes.

4. Experimental Evaluation

4.1. Effect of recognition granularity

In this section, we study the impact of different levels of

recognition granularity for estimating the 3D scene flow of

dynamic (i.e., foreground) objects. In addition to the recog-

nition cues, we use sparse optical flow from sparse Discrete-

Flow correspondences [23] and dense disparity maps from

SPS-stereo [45] for both rectified frames. We obtain the

superpixel boundaries using StereoSLIC [44]. Table 1 pro-

vides a quantitative comparison of the performance of OSF

[22] (no recognition input), ISF-BBox (2D bounding boxes

as recognition input), ISF-SegMask (2D instance segmenta-

tions as recognition input) and ISF-SegMask-ObjCoord (2D

instance segmentations in conjunction with 3D object coor-

dinates as recognition input) on our validation set (which is

a subset of the KITTI 2015 [22] scene flow training set). We

report the error with respect to four different outputs: dis-

parities in the first and second frame (D1,D2), optical flow
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D1 D2 Fl SF

bg fg bg+fg bg fg bg+fg bg fg bg+fg bg fg bg+fg

OSF 4.00 8.86 4.74 5.16 17.11 6.99 6.38 20.56 8.55 7.38 24.12 9.94

ISF-BBox 3.94 8.81 4.69 5.10 10.77 5.97 6.46 12.90 7.44 7.42 17.11 8.90

ISF-SegMask 4.06 7.97 4.66 5.26 9.20 5.86 6.72 10.78 7.34 7.74 14.60 8.79

ISF-SegMask-ObjCoord 4.08 7.98 4.68 5.27 9.20 5.87 6.72 10.84 7.35 7.75 14.66 8.80

ISF-SegMask-CNNDisp 3.55 3.94 3.61 4.86 4.72 4.84 6.36 7.31 6.50 7.23 8.72 7.46

Table 1: Quantitative results from ablation study on KITTI 2015 Validation Set. We report the disparity (D1,D2), flow

(Fl) and scene flow (SF) error averaged over our validation set for OSF [22] (no recognition input), ISF-BBox (bounding box

input), ISF-SegMask (segmentation input) and ISF-SegMask-ObjCoord (segmentation + object coordinates input). Addition-

ally, we also report results of ISF-SegMask-CNNDisp (ISF-SegMask with higher quality CNN based disparity input).

(FL) and scene flow (SF).

Our results indicate that recognition (both 2D bounding

box and 2D instance segmentation) provides large improve-

ments for optical flow estimation (and in turn scene flow

estimation) on foreground parts of the scene. Note that we

do not tackle the recognition of static background objects in

this paper which are estimated relatively well without such

priors. Furthermore, we note that instance segmentations as

input improve performance in particular at the boundary of

objects. We attribute this effect to the more fine grained na-

ture of the 2D segmentation input compared to using rough

2D bounding boxes input. We remark that for evaluation,

the KITTI 2015 benchmark considers only a subset of the

cars in the scene as foreground, specifically dynamic cars

within a threshold distance to the camera. In contrast, as

defined in section 3.3, our scene flow estimation model con-

siders all car instances detected by our CNN as foreground.

Figure 4 provides a qualitative comparison illustrating the

differences between the scene flow errors of methods em-

ploying different levels of recognition granularity. We en-

courage the reader to have a look at the first section of our

supplementary material for additional examples.

Moreover, we observe that 3D object coordinates do

not increase performance beyond 2D instance segmenta-

tions (and hence yield the same estimates, i.e., the weight

of the object coordinate terms are zero after optimization).

We attribute this to the quality of the state-of-the-art ob-

ject coordinate predictions. Specifically, the accuracy of 3D

object coordinate predictions from state-of-the-art CNN-

based methods is below what is required to further improve

3D scene flow estimation due to the high level of accu-

racy requested by current benchmarks (i.e., 3 pixels error in

KITTI). We refer the reader to the second section of our sup-

plementary material for a detailed analysis of why 3D object

coordinate predictions do not provide any further gains.

Experiments with CNN based disparity as input: Fur-

thermore, we evaluated our method with the optimal level of

recognition granularity selected based on the ablation study

(ISF-SegMask) on higher quality disparity inputs computed

from DispNetC [21] and MC-CNN-acrt [47]. In particular,

combining DispNetC results for instance pixels and MC-

CNN-acrt results for the rest performed best on our valida-

tion set. We report the results of our top performing method

ISF-SegMask-CNNDisp on the validation set in Table 1.

4.2. Results on the KITTI Benchmark

In this section, we present results of our top perform-

ing method ISF-SegMask-CNNDisp evaluated on the KITTI

2015 scene flow evaluation server. Table 2 compares the

performance of our method with other leading methods on

the benchmark: PRSM [41], OSF [22] and OSF-TC [26].

We obtain state-of-the-art performance at the time of sub-

mission, even including anonymous submissions. Notably,

our method also outperforms methods which use more than

two temporal frames (OSF-TC [26] and PRSM [41]). Fig-

ure 5 shows scene flow errors for examples where other

leading methods fail to effectively estimate scene flow in

foreground regions. Scene flow estimation is challenging

for this region as the texture-less car undergoes large dis-

placement and is occluded in the second frame. Our method

employing recognition cues performs comparatively better

than other methods. Without recognition cues, only very

few matches could be established in those regions and most

of them would be wrong. We encourage the reader to have

a look at our supplementary material for additional quali-

tative comparisons of our method to other state-of-the-art

methods.

4.3. 3D object coordinates prediction

We model our encoder-decoder network for 3D object

coordinate prediction in Caffe [17]. The network is trained

by minimizing a robust and smooth Huber loss [11] using

the Adam solver with a momentum of 0.9 and learning rate

of 1e-5. Furthermore, in order to compare the performance

of our CNN model with existing state-of-the-art approaches

for predicting the object coordinates, we train a random for-

est [3] with 3 trees and maximum depth of 64. We use the

RGB image and the depth map as input feature and sample

3 million random points during training. We find the qual-

ity of 3D object coordinate predictions significantly better

using our CNN architecture with an average Euclidean er-
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D1 D2 Fl SF

bg fg bg+fg bg fg bg+fg bg fg bg+fg bg fg bg+fg

PRSM* [40] 3.02 10.52 4.27 5.13 15.11 6.79 5.33 13.40 6.68 6.61 20.79 8.97

OSF+TC* [26] 4.11 9.64 5.03 5.18 15.12 6.84 5.76 13.31 7.02 7.08 20.03 9.23

OSF [22] 4.54 12.03 5.79 5.45 19.41 7.77 5.62 18.92 7.83 7.01 26.34 10.23

ISF-SegMask-CNNDisp 4.12 6.17 4.46 4.88 11.34 5.95 5.40 10.29 6.22 6.58 15.63 8.08

Table 2: Quantitative Results on the KITTI 2015 Scene Flow Evaluation Server. This table shows the disparity (D1/D2),

flow (Fl) and scene flow (SF) errors averaged over all 200 test images for our method in comparison to other leading methods

(OSF [22], OSF-TC [26] and PRSM [40]) on the KITTI 15 benchmark. Methods with * use more than two temporal frames.

Figure 4: Qualitative Results from Ablation Study on KITTI 2015 Validation Set. The top row shows predicted masks

and bounding boxes which form the input to our method overlaid onto the left camera image at time t and t+ 1. Each figure

in the bottom row (from left to right) shows scene flow error of OSF [22] (no recognition input), ISF-BBox (bounding box

input) and ISF-SegMask (segmentation input) using the color scheme depicted in the legend. The red box shows zoom-ins.

Scene at T=0 OSF Scene Flow error

PRSM Scene Flow error Our Scene Flow errorScene at T=1

OSF-TC Scene Flow Error

Figure 5: Qualitative Comparison on KITTI-15 Test Set. The first column shows the input images, followed by scene flow

error maps of OSF [22], OSF-TC [26], PRSM [40] and our method using the color scheme depicted in the legend.

ror of 0.6 meters in comparison to an error of 2.89 meters

using the random forest method. We attribute the lower er-

ror of the CNN based predictions to the network’s ability to

generalize well to cars with high intra class variation. We

refer the reader to the last section of the supplementary ma-

terial for a detailed description of the CNN architecture we

employed and a comparison of the quality of our 3D object

coordinate predictions to other state-of-the-art methods.

5. Conclusion
In this work, we studied the impact of different levels of

recognition granularity on the problem of estimating scene

flow for dynamic foreground objects. Our results indicate

that recognition cues such as 2D bounding box and 2D in-

stance segmentation provide large improvements on fore-

ground parts of the scene in the presence of challenges such

as large displacement or local ambiguities. Furthermore,

we showed that our method achieves state-of-the-art perfor-

mance on the challenging KITTI scene flow benchmark.
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